不久前在网上找到一套标题为《几何与想像》的教学材料,这几天刚开始看仔细看。这套教材相当有趣,它是由四名很有成就的几何学家编的(其中包括约翰 · 康威和威廉 · 瑟斯顿),用于明尼苏达州立大学的几何中心开办的一门课程。课程标题同样为《几何与想像》,名副其实,它的主要目的在于启发与提升学生、读者在几何方面的想像能力,让他们从而对各种几何形状与几何概念获得更深、更全面、更扎实的了解。
例如教材前面部分有一系列关于正多面方体(即柏拉图立体)的问题。让正四面体竖立在一个顶点上,其最高点与最底点半当中的横截面回呈现什么样的形状?让正八面体卧在一面上,同样的横截面又会呈现什么形状?在正十二面体的二十条边上行驶,能否找出一条路,让我们从一个顶点开始,当中没有重复地探访所有其他顶点,最后回到我们原来开始的顶点?若是二十面体呢,我们能从它的三十条边中拼出这样的一条路吗?
思考着这些问题时,我对这些立体奇特的素质有了深深的体会。Their symmetry is truly startling. The same number of edges and faces meet at any one vertex, at the same angles. Each of the Platonic solids thus looks exactly the same from any one of its vertices, or from any one of its edges, even the icosahedron with its thirty edges and twelve vertices. There isn't only symmetry in each of them, there's symmetry among the five of them: the dodecahedron has twelve faces and twenty vertices, the icosahedron twenty aces and twelve vertices, and both have thirty edges. Their graphs are dual. Same for the octahedron and the cube ... and the tetrahedron is its own dual. When such symmetry as such, in dry, compact words, it is merely an interesting fact. When one discovers it for himself (or herself) in the process of visualising, realising these solids in the mind's eye, it becomes an source of sheer wonder.
在这以前两个星期还在做竞赛题目,做到头昏脑胀还做不出。通常思考到后来就开始思路模糊不清,已经被发现行不通的旧思路反复地在脑子里转,新思路怎样也想不出。归根结底,大概是因为不完全理解而缺乏想像力。不了解题目的根本,没有想像力得出新的思路,结果一直钻牛角尖,捉不住解题的关键。
在这样的情况下,预期继续闷头死做题目,远远不如通过类似与《几何与想像》的教材来培养想像力与数学直觉。
How the Planets Protect us From the Sun
10 hours ago